Avoiding symmetry-breaking spatial non-uniformity in deformable image registration via a quasi-volume-preserving constraint
نویسندگان
چکیده
The choice of a reference image typically influences the results of deformable image registration, thereby making it asymmetric. This is a consequence of a spatially non-uniform weighting in the cost function integral that leads to general registration inaccuracy. The inhomogeneous integral measure--which is the local volume change in the transformation, thus varying through the course of the registration--causes image regions to contribute differently to the objective function. More importantly, the optimization algorithm is allowed to minimize the cost function by manipulating the volume change, instead of aligning the images. The approaches that restore symmetry to deformable registration successfully achieve inverse-consistency, but do not eliminate the regional bias that is the source of the error. In this work, we address the root of the problem: the non-uniformity of the cost function integral. We introduce a new quasi-volume-preserving constraint that allows for volume change only in areas with well-matching image intensities, and show that such a constraint puts a bound on the error arising from spatial non-uniformity. We demonstrate the advantages of adding the proposed constraint to standard (asymmetric and symmetrized) demons and diffeomorphic demons algorithms through experiments on synthetic images, and real X-ray and 2D/3D brain MRI data. Specifically, the results show that our approach leads to image alignment with more accurate matching of manually defined neuroanatomical structures, better tradeoff between image intensity matching and registration-induced distortion, improved native symmetry, and lower susceptibility to local optima. In summary, the inclusion of this space- and time-varying constraint leads to better image registration along every dimension that we have measured it.
منابع مشابه
A Study on Robustness of Various Deformable Image Registration Algorithms on Image Reconstruction Using 4DCT Thoracic Images
Background: Medical image interpolation is recently introduced as a helpful tool to obtain further information via initial available images taken by tomography systems. To do this, deformable image registration algorithms are mainly utilized to perform image interpolation using tomography images.Materials and Methods: In this work, 4DCT thoracic images of five real patients provided by DI...
متن کاملEvaluation of deformable image registration in HDR gynecological brachytherapy
Introduction: In brachytherapy, as in external radiotherapy, image-guidance plays an important role. For GYN treatments it is standard to acquire at least CT images and preferably MR images prior to each treatment and to calculate the dose of the day on each set of images. Then, the dose to the target and to the organs at risk (OAR) is calculated with worst case scenario from I...
متن کاملDeformable registration using edge‐preserving scale space for adaptive image‐guided radiation therapy
Incorporating of daily cone-beam computer tomography (CBCT) image into online radiation therapy process can achieve adaptive image-guided radiation therapy (AIGRT). Registration of planning CT (PCT) and daily CBCT are the key issues in this process. In our work, a new multiscale deformable registration method is proposed by combining edge-preserving scale space with the multilevel free-form def...
متن کاملIntensity-Based Non-rigid Registration Using Adaptive Multilevel Free-Form Deformation with an Incompressibility Constraint
A major problem with non-rigid image registration techniques in many applications is their tendency to reduce the volume of contrast-enhancing structures [10]. Contrast enhancement is an intensity inconsistency, which is precisely what intensity-based registration algorithms are designed to minimize. Therefore, contrast-enhanced structures typically shrink substantially during registration, whi...
متن کاملIncreasing Symmetry Breaking by Preserving Target Symmetries
Breaking the exponential number of all symmetries of a constraint satisfaction problem is too costly. In practice, we often aim at breaking a subset of the symmetries efficiently, which we call target symmetries. In static symmetry breaking, the goal is to post a set of constraints to break these target symmetries in order to reduce the solution set and thus also the search space. Symmetries of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 106 شماره
صفحات -
تاریخ انتشار 2015